CIT73 Object Oriented Concepts

Study Guide 1 for text pages 5 -10

1. Introduction

This is our first study guide for this class. These study guides are based on the text material with some of my own thoughts inserted along with the main ideas presented by the author. The study guides represent the content of my lecture, and the basis for my lecture outline. You can use the study guides in several ways:

a. As an introduction to the contents of this week’s material.

b. As a checklist for making sure that you have caught the important points as you read the text.

c. As a summary of the material covered this week.

d. As a resource for working on the homework assignment for this week.

e. As a resource for preparing for the scheduled exams.

The sequence of material in the study guide will follow the sequence of the text material for the most part.

2. Object Oriented Concepts – Page 5

The old adage, “If it ain’t broke, don’t fix it!” has hindered the development of 00 (Object Oriented) systems. Systems developed during the last twenty-five years of the 20th century were implemented with third generation programming languages that used procedural programming concepts. These systems are called legacy systems. Procedural programming involves writing a series of instructions in sequence (i.e., always execute the next instruction following this instruction), unless specifically instructed to pass control to another instruction somewhere in memory. In a procedural programming all input data is read separately from input media (console keyboard, disk drive, etc.) and, likewise, all output data is written to output media (console, screen, printer, disk drive, etc.). This code is sometimes called “structured code”. Any program can be written at any time to add, modify, or delete any data residing on a permanent storage media (disk or tape).

If old legacy systems are functional and satisfying the needs of the users and the user organizations, there is no need to change them. New software development, and especially web based systems should be developed using 00 concepts in the 21st century. 00 systems can contain old structured code “buried inside” of an object with 00 code using what is called an Object Wrapper. More about this later.

3. 00 Programming vs. Procedural Programming – Page 6

As people we think of the world as a collection of objects, or at least for the time that we are taking this course, we should think about the world as a collection of objects. An object is defined by its attributes and its behaviors. The attributes of, or the data in a Rectangle object might be length, width, and color. The behaviors of a Rectangle object might be expressed by a procedure or method.(stored in each Rectangle object) to calculate its perimeter, or calculate its area, or draw itself on the screen. Note the “Difference between 00 and Procedural” at the top of page 7. Note that objects solve the problems created by Procedural Programming where data and behaviors are separated by combining data and behaviors into a complete package. Combining data and methods to operate on the data is called encapsulation. This is a very important concept. Note that attributes and data mean the same thing and behaviors and procedures and methods mean the same thing. We seem to do that only to confuse students. When data exists apart from the methods, we call the data “global data” vs. “local data” which exists in an object.

The data in an object can be “primitive” such as integers, real numbers (with a decimal portion), characters, or strings of characters. Using good OO systems design, the data in an object can only be processed by the methods in the object. Access to the data and the methods of an object can be controlled. Both data and methods can hidden from other objects. Usually only the data is hidden and the methods are known and available to other objects!

4. Object Communication – Page 8

Note figure 1.3 on page 9. Objects communicate by “calling” methods in other objects.

Example:

Object A can access a particular Rectangle object (Object R) and execute the “Calculate Area” method in Object R. The Rectangle object can then return its area to Object A.

Object A does not need to know how the area is calculated by the

‘CalculateArea” method in Object R which is a Rectangle object.

The “Calculate Area” method in the Rectangle object can be modified from time to time without affecting the way that Object A calls the method.

 5. Small Objects vs. Large Objects – Page 8

The size of an object is determined by the number of data items (also called

 “data vars” for data variables), and the number of bytes in each data item plus the

 number of methods and the number of bytes contained in the code for each

method.

6. Object Design Principles – Page 8

a. Keep objects small with minimum data required by their functionality and a minimum number of methods also required by their functionality.

b. Each object should be designed to have specific tasks.

c. A system should contain many small interacting objects rather than a few large objects.

