CIT 73 Object Oriented Concepts

Study Guide 2 for text pages 10 – 17

Object Data – Page 10

The value of each Data item is usually unique for that data item. The combined values of all of the values in each data item represent the state of the object. Data items or attributes are “holding places” for all of the data values that make this object different from the next object.

Object Methods – Page 10

The coded syntax in each method of each object describes the behaviors of the object and also describes, “what each object knows how to do”. You can write code in an application program object (that has a main method) to execute or invoke any method in any particular object. You therefore invoke a method by sending a message to it that is called a “method call”. Methods usually accept data and modify data in the object, display object data on the screen, write object data to a disk file, or return one object data item to the calling method (i.e. the method that called a particular object method).

Getters and Setters – Page 11

Private data items are hidden, (referred to as data hiding) and cannot be retrieved by other objects unless the object that contains the data has a public method that “gets” and returns the private data item. These methods are usually referred to as “getters”.

The same private data members cannot be modified unless there is a public method in the object which accepts data from the user and modifies the data item. These methods are usually referred to as “setters”.

Interfaces – Page 11

An interface of a method contains only the name of the method, the data type of the parameters passed to the method, and the type of the data item that is returned by the method. Note that some methods do not accept parameters and some methods do not return a data item. If an object wants to invoke a public method in another object, all it needs to know in addition to the name of the object is the information contained in the interface.

UML Class Diagrams – Pages 12 & 13

Class diagrams are used to represent classes and the objects created from those classes. UML class diagrams are drawn as a rectangular box with a horizontal solid line separating the class name from the data items and another horizontal line separating the data items from the methods. Note figure 1.8 on page 12 that represents an Employee object.

We will be using a free UML drawing tool named Violet on the web available at http://www.horstmann.com/violet. Study the Usage Guide starting on page 2 thru page 4. You should plan on printing the complete tutorial that is on the Violet web site. Note that you will have to use the free downloadable version of Violet and execute it locally in order to save and export .violet files with UML diagrams. We will be using Violet to create UML class diagrams for the remainder of the course. You can use the link on the class web page to download the executable jar file for Violet. See Violet Quickstart Notes in the sample list for instructions on executing Violet. Another free UML drawing tool is called Argo and is downloadable from http://www.Argouml.tigris.org. It is more functional than Violet, but it has a longer learning curve. Other UML drawing tools are used for object oriented modeling in the real world such as Rational Rose and TogetherJ, but they are not free. You will be using one of the more advanced UML drawing tools in the CIS75 Software Design course.

Check out the two UML class diagrams on page 12, (Employee class and Payroll class).

 The top section contains data members which are private (hidden) per the minus sign before each data member. The info following the data item name and the colon (:) identifies the type of data item.

The bottom section contains the methods which are public (not hidden) per the positive sign before each method. The info following the method name and the colon (:) identifies the type of the returned data. Note that void indicates that the method returns nothing. The input parameter list for each method is required if we are going to pass input parameters to the method. The input parameter list includes a reference name and data type for each required parameter to be passed to the method when it is called. It is entered in parentheses immediately after the name and before the colon. If no input parameters are required then the input parameter list is blank.

The UML sample on the course web site shows the input parameter list and the return data type for each method. See the UML Diagram for the Rectangle Class in the Violet Class Notes and the UML Diagram for Rectangle Cube Inheritance on the class sample list

Examples:

+getSocialSecurityNumber():String

+setSocialSecurityNumber(ssnum:String) :void

Rectangle Class and the Rectangle UML Class Diagram

The sample list on the course web page has a sample of the UML class diagram with notes for creating it using Violet, and inserting it into a Word document. See ”Violet Class Notes” in the Sample List. The Sample list also has several samples of Java code for the Rectangle class. See “Java Code for Rectangle Class used in Violet Class Notes”. You should be comfortable with the relationships between the UML class diagram and the Java class for describing Rectangle objects, and you should be able to create UML diagrams and the corresponding Java class files.

Instantiation – Page 13

A class is like a template or blueprint for creating particular objects. When we create an object we say that we have instantiated an object or we have created an instance of the class. Each object created has data items with values and each object has a copy of all of the member methods.

What Exactly is a Class?

This is a review of previous discussions which you should be comfortable with by now. Note that an object cannot be instantiated without a class template. Classes are written using Java code, for example. A class is a high level data type. int i indicates that i is an iinteger. Float f indicates that f is a floating point number with a decimal. Flight curentFlt indicates that currentFlight is an object of the Flight class.

Using Templates for Instantiation – Page 15

Note how class templates are used to instantiate objects very similar to the way a cookie cutter is used to create cookies. You should check out the Rectangle class on the course web page. This class and class diagram are very similar to the Employee class on page 12. The RectangleUser Class, also on the course web page is similar to the syntax for the Payroll class at the bottom of page 16. The RectangleUser class has a main method that instantiates (creates) and processes objects.

Attributes, Methods – Pages 16 & 17

The review of the definition and functionality of these three items is important before we move on to week 3.

