CIT 73 Object Oriented Concepts

Study Guide #3 for Week 3 – Text Pages 17 – 27

UML Diagram for the Rectangle Class – Page 17

A UML class diagram for the Rectangle class has been added to the Violet Class Notes on the cit73 sample list. Note that the corresponding Java source file for the Rectangle class used in the Violet Class Notes is also on the cit73 sample list.

The UML class diagram was prepared using the UML graphic editor named Violet. You can run this UML editor from the “Try it Out” link on the Violet home page which is at http:// houstmann.com/violet. To save UML diagrams into a .violet file, export them to a .png file, and insert them in a Word.doc file, you should click the link on the Violet home page for violet-0.16a.jar and follow the instructions in the Violet Class Notes on the cit73 sample list. In addition to the UML diagram for the Rectangle class, the Violet Class Notes has instruction sections as follows:

1. Downloading and Executing Violet

2. Using Violet “Quick Start” to Create a UML Class Diagram

2. How To Insert a .violet file into a Word .doc file.

UML Differences Between TextBook and Sample – Page 17

The textbook example (Figure 1.11) shows only the return type of each method. The textbook diagram does not indicate the parameter list (see page 107!) and note that it is unclear as to what type of parameters and how many (if any) must be passed to the method when it is called.

Example: +setAddress:void

The UML Rectangle Class Diagram sample in the Violet Class Notes (see the cit73 sample list) shows the parameter list for each method.The parameter list includes a reference name and data type for each required parameter to be passed to the method when it is called.

Example: + setWidth (widthin:double) :void

One double is the only item in the parameter list indicating that when this method is called a double literal or a double variable must be passed to the method named setWidth and stored in a variable named widthin. The “void” indicates that this method returns a void data type which means “nothing”.

Encapsulation Confusion – Page 17

There is also some confusion relative to the meaning of an Interface.

 The class design specifies the class interface which is a list of all of the public attributes and methods that are available to other objects and users. Private attributes and methods are not part of the class interface.

A method interface contains the header line of the method and indicates the:

1. Access Modifier

2. The name of the method.

3. The parameter list required when this method is called

4. The type of data that may be returned by the method

Private Methods – Page 20

Note the UML diagram for the IntSquare class on page 20. It has a public method named getSquare(int) which calls a private method named calculateSquare(int) method. The calculateSquare method is an example of good OO design where a public method in the class is calling one or several other private methods, rather than allowing the public method to become very lengthy. This is the “divide and conquer” philosophy where large problems can be divided into smaller problems and “attacked” one at a time. The syntax for a method should not be greater than one “screenful”.

calculateSquare method is not part of the class interface because it is private. We want it to be private so that no method from any other object can access the private method. It can only be accessed by the public method that calls it.

Inheritance – Page 21

Inheritance allows a class to inherit attributes and methods from another class. Note the Mammal, Dog, Cat UML diagram in figure 1.14 on page 21 for the Mammal herarchy. This is another example of the “reuse” opportunities that object oriented design offers. Note that the Mammal class is a Superclass and both the Dog and Cat classes are Subclasses by definition. This UML diagram (page 21) indicates that the Dog class and the Cat class inherit all of the attributes and methods that are in the Mammal class. Inheritance allows us to place all of the common attributes and methods in the Superclass and only enter the unique attributes and methods for each Subclass into the particular SubClass. It is important to note that the Dog class has two attributes, and they are eyeColor which it inherits from the Mammal class and barkFrequency which appears in the Dog class. The Dog class has two methods, and they are getEyeColor which it inherits from the Mammal class and bark which appears in the Dog class. All objects of the Dog class will have two attributes and two methods. This does not include the constructor and the necessary setters and getters.

We could consider a Vehicle Superclass with Car, Truck, SUV, and Bus Subclasses. We could also consider a Rectangle Superclass with a Cube Subclass. Since the UML diagram for the Rectangle class is on the class website along with the Java syntax for the Rectangle class, we should consider what the UML diagram would look like for the Cube class if it inherited everything from the Rectangle class.

Abstraction in UML Diagrams – Page 22

Note on page 23 in figure 1.15 how the Dog class has been abstracted (”sub-divided”) to include a German Shepard class and a Poodle class. Note that in this case the Dog class continues to be a Subclass of Mammal, and it is also a Superclass of GermanShephard and Poodle.

HAS-A Relationships – Review

The relationship that we have studied relative to an object and its attributes is a HAS-A relationship. With this kind of a relationship we understand that a Rectangle object HAS-A length and HAS-A width. A Car object HAS-A manufacturer, and HAS-A year of manufacture, and HAS-A price, and HAS-A vehicle type. This relationship is the basis for what is called Composition (see page 27).

IS-A Relationship – Page 22

These relationships are the basis for what is called Polymorphism in the Object Oriented world. In figure 1.14 on page 21, we can observe that since a Dog has all of the attributes and methods of a Mammal, then it IS-A Mammal. Note also in figure 1.15 on page 23, we can observe that if a Poodle has all of the attributes and methods of a dog, then a Poodle IS-A Dog!

Polymorphism – Pages 24 – 27

The availability and use of Polymorphism (“many forms”) in object oriented design is the result of using the Inheritance feature. The example in the text which discusses the Shape Superclass with the Circle and Rectangle Subclasses is an excellent demo for understanding the “magic” of Polymorphism. The UML diagram for this hierarchy is in figure 1.18 on page 26. Note that the getArea () method in the Shape class is in italics. This indicates that the getArea method in the Shape class is an ABSTRACT METHOD. That means that the method has no body in the Shape class (i.e. no statements in the method), and it also means that since it is abstract in the Shape Superclass, then it must be implemented in all Subclasses (Rectangle and Circle) of the Shape class. The name of the Shape class should also be in italics to indicate that it is an abstract class and therefore no objects of the Shape class can ever be instantiated (created). It is important to observe in the syntax (page 24 & 25) that the getArea method is implemented in both the Rectangle and Circle classes as it must be since it is abstract in the Shape class. Note also the abstract modifier used in the header line of the Shape class and the getArea method in the Shape class (see page 24). The syntax for each of the Subclasses also shows the code for the constructors which is indicated in the UML diagram. Also note the “Polymorphic UML Sample Using an Abstract Class” on the course sample list.

NOTE: WHEN USING THE VIOLET UML TOOL, YOU CANNOT USE italics. IN OUR COURSEWORK WE WILL ENTER THE METHOD OR CLASS NAME ENCLOSED IN DOUBLE QUOTES (“) TO INDICATE THAT IT IS ABSTRACT.

How Polymorphism Works

If we create a Circle object, note per our reference to an IS-A relationship (see above), the Circle object IS-A Shape object. The same would hold true if we had created a Rectangle object and it also IS-A Shape object. If they are both Shape objects then we could move the address of the Circle or Rectangle objects into the address of a Shape object and call the getArea method from Shape address. If we somehow forgot what object (Rectangle or Circle) was in the Shape address it would not matter and when we “blindly” called the getArea method from the Shape address it would execute the proper method from either the Rectangle or Circle class. Java “knows” what object IS-A shape in this case, and this is the magic of Polymorphism.

