Study Guide 4 for Week 4 Chapter 2

How to Think in Terms of Objects

This week we are learning how to think about objects so that we can attempt to design an Object Oriented solution for a functional object system. Designing an OO system is an art, and there is no right or wrong way to begin, but we must be thinking about objects in order to get started. Before you can start to write an OO system in Java, we must first make an effort to understand OO objects and the corresponding thought process. There are three important things that you should keep in mind as we continue to discuss the design and functionality of good OO systems. They are as follows:

1. Knowing the difference between the Interface and the Implementation pages 30 – 35

The example of the interface between the toaster and the power plant along with the example of the components for operating an automobile and what is under the hood of the auto are important for you to thoroughly grasp. The toaster interface is the electrical wall outlet. The auto interfaces are the ignition switch, steering wheel, gas pedal and brake pedal.

Class interfaces include the names of all of the public method interfaces in a class and are used for selecting classes and for reviewing class methods. A method interface consists of the access modifier, method name, parameter list, and return type. End users have no reason to use class or method interfaces.

The method implementation consists of the coded details that provide the functionality of the method. They are not public since the user should not be concerned with the details. The main thing to remember is that a change to the implementation should not require a change to the user’s code. The Interface/Implementation Example on page 32 is important conceptually but don’t get too hung up with the public interfaces of the Oracle Data Base Reader class on page 33. The requirements of the class drive the design of the methods, but beware that especially the IT people can get carried away designing all sorts of class methods for which there are no real requirements! One should at first consider that the class has no interfaces and only add interfaces to satisfy a particular requirement. Users create the requirements, and we must be able to recognize the “real” users.

Note that OO databases have Object Persistence, which is the ability to allow objects to “live for a long time”, since we only have to keep the attributes of each object stored in a “packed” binary file. OO databases are a collection of objects. Each object may have attribute references to both primitive data fields and/or objects of other classes. At any point in time we can reconstruct any or all of the objects by calling the constructor and passing it the attributes for each object.

You should do some of your own research to satisfy yourself that you understand the concept behind the data base designs that have preceded the current OO Data Base. They are in sequence as follows:

1. Flat Files which are basically unrelated tables

2. Hierarchical databases

3. Linked or Networked databases where each record has a link to all of the other

 records.

4. Relational databases that are related tables

In summary, note that by separating the user interface from the implementation so that the implementations in Java are not visible to the end users who really don’t need to see them, requires clean and concise interfaces for the class and the methods.

2. Abstract Thinking for Designing Interfaces pages 36 – 38

OO programming allows for the reuse of classes by implementing inheritance and polymorphism. An abstract super class can be used by several sub classes. Each of the sub classes can inherit all of the attributes and methods of the super class. The other alternative involves the use of several/many “concrete” sub classes with duplicated code in each sub class. As OO designers we should be looking for opportunities to use abstract super classes that contain all of the duplicated code. Note that an abstract class cannot be instantiated and an abstract method in a super class must be implemented in all of its sub classes.

The textbook example using the taxi class is an excellent demo for the use of abstract classes vs. “concrete” classes. Note that from the abstract class with the “take me to the Airport” abstract method provides the possibility of sub classes such as BostonTaxi, ChicagoTaxi, NYTaxi, etc. In each case the sub class would have its’ own implementation of the abstract method and the end user could get into a taxi in any city and call the take.me.to.the.Airport method!

3. Giving the User the Minimal Interface Possible Pages 38 – 41

The following points are important!

 1. Give the users only what they absolutely need.

 2. Initially “hide” the entire class from the user.

 3. Certain methods will be required for public interfaces.

 4. Design classes from the user’s perspective.

 5. Who are the real users?

 6. Do not allow technology to become a user!

 7. Build a prototype and be prepared to modify as needed.

 8. After the users are identified, determine the required behaviors of each object.

 9. After the users have been identified and the object behaviors have been determined, then

 the public interfaces can be designed.

10. After the public interfaces are determined, then identify the private attributes and method

 algorithms/details required for implementation.

11. Note that it should be possible to modify any part of the implementation without modifying

 any of the public interfaces.

