CIT 73 Object Oriented Concepts

Study Guide for Week 5

Chapter 3 - Pages 43 – 53

We have covered many of the basic concepts required to understand what an Object Oriented System is all about. More recently we discussed how to change our thinking relative to the design of a small OO system. Now we have to turn our attention to some more advanced concepts and more details reference concepts we have previously discussed. These new concepts are required for us to work on the detail design and implementation (Java coding) of the OO system. This week we will be discussing Constructors and Exception Handling

 Constructors – Pages 43 – 45

Constructors do not exist in structured procedural programming. The function of a Constructor is to create/instantiate new objects and to initialize all of the attributes in the new object. Constructor methods DO NOT return anything and NEVER have a return type. They are the only methods that do not have a return type.

Example 1 public class Rectangle ()

 {

 length = 0

 width = 0

 }

This constructor for the Rectangle class (see Sample List on the class web page) has no parameters that are passed into it and it sets the two attributes of the Rectangle object to zero.

Example 2 public class Rectangle (int l, int w)

 {

length = l;

width = w;

 }

This constructor for the Rectangle class has a parameter list, and it is passed two integer variables (l and w), which are used to initialize the attributes length and width.

The classes that describe objects have a default constructor provided by Java. The default constructor initializes all primitive numeric attributes to 0 and all object attributes to null. . Therefore, there is no reason to code the constructor in example 1 because it has the same functionality as the default constructor. On the other hand, I prefer to code it for documentation purposes.

Example 1 and 2 above could both be coded as it is in the Rectangle class on the class web page sample list, and yes we can have multiple constructors with the same name as long as the parameter list is different. The combination of the method name (Rectangle) and the parameter list make up what is known as the “signature” of the method and a class can have multiple constructors as long as the signature of each constructor is different. In Java and C++ the return type is not part of the signature.

Overloading Methods – Pages 45 & 46

By definition these two constructors are called overloaded methods. In any class we can have multiple methods in addition to constructors with the same name and different signatures.

Using UML with Constructors – Pages 46 & 47

The UML diagram on page 47 does not look too much different than the others that we have seen to date. Note that it has two constructors each named “DataBaseReader”. This is somewhat confusing when the signature of each constructor is not shown. I have been indicating the parameter list for each method interface in the previous study guides and on the samples posted on the web. See “UML Diagram for Rectangle Cube Inheritance”. You should include the parameter list in the signature for each method interface on your UML diagrams. It eliminates the confusion with multiple method names, and it alerts users of your UML diagram as to what type variables are required in the parameter list of each method. Note the Java coding for the two DataBaseReader methods on page 48.

Super Class Constructor – Pages 48 & 49

It is important to realize that all sub class constructors will call the default super class constructor unless the sub class constructor explicitly calls one of the coded constructors in the super class. Typically this is the very first statement in the sub class constructor. See how the Cube constructor calls the Rectangle constructor in the “Cube Sub Class for Rectangle Cube Inheritance” posted on the sample list on the class web page. Note how the Cube constructor is passed the length, width, and height and then immediately calls the super constructor of the Rectangle class and passes it the length and width. The Cube constructor then initializes the height attribute of the Cube object.

Error Handling – Pages 49 – 51

Object Oriented Systems allow for the detection, trapping, and “handling” of error conditions that occur in application code before they cause a “program crash”. There is no reason that a Java OO application should ever crash if the programmer uses the tools that are available for prevention.

When an offensive condition is encountered by the Java Runtime Environment that may crash an application an Exception object is instantiated and made available to the application. The Java programmer can write code to check for the instantiation of an Exception object in a “try block” and then process or handle the Exception object in a “catch block”. When an application instantiates an Exception object, we call that “throwing an exception”.

Note on page 49 that the programmer has four options for preventing program crashes. The preferred option is to throw an exception, catch it and process it. This option is only available in OO application program files. The first three options are discussed on page 50, and they are available in either procedural or OO programming.

Throwing Exceptions – Pages 51 – 53

Note the basic code for the try block and the corresponding catch block on page 51. Offensive code that may cause an exception (Arithmetic, NumberFormat, IOException, etc.) is embedded in a try block, and this is where the Exception object will be created if an “offensive condition” exists. There must be at least one catch block following the try block that matches each Exception object that may possibly be instantiated inside of the try block. The catch block catches the Exception object if the catch block accepts in its’ parameter list an Exception object of the same class as the Exception object instantiated in the try block. The try block will “throw” the Exception object, and the catch block is coded to “catch it” as a parameter. Note the try catch blocks at the bottom of page 51 and at the top of page 52. This is an important concept to understand. The list (with 5 steps) describing what occurs when an Exception object is thrown is also important.

