CIT 73 Object Oriented Concepts

Study Guide for Week 6 Pages 53 – 60

Scope, Operator Overloading, and Multiple Inheritance

Scope

Each object is assigned a separate memory location when it is created. Some attributes and methods may be shared by many objects, and in this section we will see how that is implemented. For example, constructors only exist in the class and they are shared by all instances of the class. Methods such as constructors that exist only in the class are called static methods in Java.

The scope of an attribute or a method refers to “where” that attribute or method is known. Some attributes, for example, are only known inside of a method, others are known by all methods in an object, and still other attributes are known by all objects of a particular class. The state of an object at any particular moment is represented by the values of its attributes. There are three types of attributes (see page 53) local attributes, object attributes, and class attributes.

Local Attributes

These attributes are declared in a specific method. They are sometimes called local variables in Java. Note the example at the bottom of page 53. The variable named “count” is declared inside of method1, it is only known inside of method1, its scope is method1, and therefore it is called a local var or local attribute. Count can only be accessed inside of method1. When method1 terminates, count is destroyed and no longer exists. Note that there could be a count var in both method1 and method2 (see page 54). These are two different variables and both are local to their respective methods, similar to two people with the same name, but living at different addresses.

Object Attributes

An object attribute is an attribute shared by all of the methods within a particular object. Note the “count” variable/attribute declared as the first statement of the Number class on the bottom of page 54. It is available to both method1 and method2. We say it is available to all methods of the class and is sometimes called a global var. There is only one “copy” of count for the entire object, and the statements that assign a 1 to count in method1 and method2 are accessing the same copy of count. The scope of count is, therefore, the entire object.

Note that in addition to having int, double, and String attributes we can also have attributes that are objects. These objects which are instantiated from a miscellaneous object class are also sometimes called object attributes. These “object attributes” are not to be confused with the object attributes referenced above and in your text on page 54. If we designed and implemented a Date class with attributes for month, day, and year we could then have an orderdate attribute in a CustomerOrder class, and the orderdate attribute could be of type Date. Otherwise we would have had to create three attributes for month , day , and year anytime we wanted to have a date in a class. We really should refer to these attributes as “attributes of type class”, where class is the name of miscellaneous object class.

Object Attributes and Local Attributes Combined

Note that in the demo Number class (bottom page 55 – top page 56) count is declared as an object attribute, and as a local attribute in each of the methods. The scope of each local var called count is limited to the method in which it is declared. The scope of the object var called count is the entire object. If count is referred to outside of method1 or method2, then the object var is accessed. Obviously if count is referenced inside of method1 or method2, then the local var called count in that method is accessed. If we wanted to access the object var called count inside of method1, we would have to access it by “this.count” where this implies “of this object” thus referring to the object var. “this” is a keyword in Java. A keyword cannot be used as an attribute name, or a method name, or a class name.

Class Attributes

Two or more objects can access the same attribute in a class. The attribute is called a class attribute. In Java it is declared using the “static” modifier. See bottom of page 56. All objects of the class use the same memory location for count if count is declared as a static attribute in the class. Note that the syntax on page 57 is in error. It should be as follows:

Number Num1 = new Number ();

Number Num2 = new Number ();

Operator Overloading

In C++ you can change the meaning of arithmetic operators as well as relational operators. The meaning of the + op can be changed to indicate subtraction and the meaning of the > op can be changed to less than. These kinds of changes are referred to as operator overloading and with one exception are not available in Java. Java only allows the overloading of the + op as follows:

total = gross + tax; where the + op indicates addition

address = street + city + state + zip; where the + op indicates the joining (concatenation)

 of two or more String objects to create a new String object

Multiple Inheritance

Likewise multiple inheritance capability exists in C++ but is not allowed in Java. The Interface class in Java provides some of the functionality for multiple inheritance, but not all of the functionality that we see in C++. Multiple inheritance involves the ability of a sub class to inherit from more than one super class. See bottom of page 58 – top of page 59. For example, we could have a “Duck” class for the amphibious vehicle objects used by the Boston Duck Tour Company. The Duck class could inherit attributes and methods from a Boat super class and a Truck super class if multiple inheritance was allowed. Although operator overloading and multiple inheritance are not allowed in Java, it is important as students of Object Oriented Concepts to understand that they can be implemented in OO Languages other than Java.

Object Operations

Comparing primitive attributes/variables such as numeric data types (integer or real numbers) or characters is easily implemented with relational operators(<, >, ==, etc.) in all OO Languages. Likewise, copying primitive vars is also easily implemented in all OO Languages. Comparing or copying objects with primitive attributes/variables is implemented also in OO Languages, but when an attribute is a reference to another object, life in the OO world it becomes

more complex. To make matters worse the Object attribute may contain more references to even more objects (see pages 59 & 60).

As an example, consider that a student class has an attribute named DOB (for date of birth) that is not a primitive but is a reference to an object of the Date class. We can assume that the Date class probably has three int attributes, one each for the day, month, and year along with setters and getters and methods to display the contents of the attributes in several different formats (10–12– 06), 10/12/06, October 10, 2006 and etc.) You should consider the complexity involved when you want to compare two student objects based on their DOB to see which one is older. Copying these objects requires not copying the reference to the Data Object, but also copying the Data object contents that represents the state of the Date object at the time of the copy. Java provides a serialized Interface to copying objects of this type that is quite easy to implement. See “Starting Out with java 5” by Tony Gladdis (ISBN 1-57676-171-1) pages 799 – 803 for a good discussion on Serializable Objects or check the index of other Advanced java texts and the links provided by Google.

