CIT 73 Object Oriented Concepts

Study Guide for Week 7 – Chapter 4

This week we are going to be taking a “hard look” at the java syntax used to describe a class and all of the objects that could be instantiated from a particular class. We have previously discussed the concepts of classes and objects using first a language called English, then a graphical language called UML (Universal Modeling Language). During that time we also looked at some short samples of Java code used to describe a class, attribute, or method. Certain rules reference Java were introduced or implied. This week we will learn all of the java syntax rules and definitions for designing and describing classes, using the UML Class Diagram.

Class Syntax – Page 61

In order to describe a class in Java we must understand the difference between the interfaces and the implementations. After the class has been described, the bottom line evaluation for the class is:

a. How useful is the class?

b. How does the class interact (“work”) with other classes?

Note that classes interact with other classes in many ways by:

a. inheriting attributes & methods from other classes

 b. becoming a super class for other classes

 c. describing objects that become attributes of other classes

Class Name Statement

public class Rectangle

{

}

Comment Statement

// Single Line Comment

 /* Start of Multi Line Comment

 */ End of Multi Line Comment

/** Start of Documentation Comment

 */ End of Multi Line Comment

Note that a Documentation Comment will display the Java source file after the next statement and in the same font and format used by the documentation in the Application Program Interface (API) library classes.

Attributes

. private int length;

This is an object attribute and can only be accessed by methods in this object.

 . private static double interestrate;

 This is a class attribute! Only one copy will be available for all objects for the class.

 . private Date paydate;

This is a Date object with attributes…possibly for day, month, and year. The Date class is a user designed class and not a class in the API. It most likely has methods for displaying the date in many different formats. paydate is a reference to an object. Note that no object has been instantiated (created) by this statement.

Constructors without Signatures

. public Rectangle ()

 { length = 0;

 width = 0;

 color = null;

 }

This constructor method sets all primitive (numbers or characters) to zero or blank and sets all object references to null. Null means “nothing”, and color is a reference to a String object which has not been set to point to any reference address. In addition, note that it is the default constructor which will be automatically provided by Java if no other constructor appears in the class. If any constructor is coded in the class then no default is provided.

Multiple Constructors with Signatures

The signature of a constructor includes the class name plus the parameters and the data type of each parameter in the parameter list. We use the parameters to initialize attributes when the constructor “builds” (instantiates) an object.

. public Rectangle (int len, int wid, string col)

 { length = len;

 width = wid;

 color = col;

 }

We could have other constructors with the following parm list:

 public Rectangle (int len, int wid);

 public Rectangle (String col);

 public Rectangle ();

These constructors have different signatures and should initialize all attributes either with values from the parameter list or by using default values.

Accessors

Attributes usually have a private access code which is to hide the object’s data from the “outside world”. Public “setter” and ”getter” methods are provided to allow application program objects and other objects to gain controlled access to the private attributes. The “setters” and “getters” are called accessors. You should think of public accessors as being present in each object in memory. If we create several objects of the same class in memory, the Java Runtime System will place all of the accessors in memory and then place “pointers” in each object to point to the address of each accessor.

Class Attributes and Methods

Class attributes are static attributes that provide one copy of the attribute that is accessible by all methods in all objects of the class. Likewise one copy of each static method (or class method) is available to all objects of the class. Static methods can only call static methods. Static methods can only access static attributes and static attributes can only be accessed by static methods.

Examples: private static String companyname = “General Electric Co”;

 public static String getCompanyName()

 {

 return companyname;

 }

Note that only one copy of companyname and getCompanyName () exist for all objects of this class!

Public Interface Methods

Constructor and accessor methods are public and make up the public interface of a class.

Example: public double getFicaTax ()

 {

 double factor = lookupFactor (paytype, gross);

 return gross * factor;

 }

Assume that paytype and gross are private attributes in the Employee class.

Note that getFicaTax is a public method and it is calling a private method named lookupFactor..

Private Implementation Methods

Other supporting methods allow for abstraction and need not be public. As private methods they are not part of the public interface.

These private methods, such as lookupFactor below are hidden from other classes and are part of the implementation.

Example: private double lookupFactor (int type, double grs)

 {

double taxfactor = type * (.25 * grs);

 return taxfactor;

 }

These methods are used to allow for abstraction in a public method. They are sometimes used when we want to keep public or other private methods from becoming too lengthy.

Use of Super Constructors

See the Rectangle constructor in the Rectangle Super Class in the Sample list on the course web page. It has two input parameters named l and w, which are used to initialize the length and width attributes when instantiating a Rectangle object. Then check out the constructor in the Cube class and notice how it accepts parameters for len, w, and h. It then calls the super constructor from the Rectangle class and passes it len and w. Finally it uses h to initialize the height attribute in the new Cube object.

 Note that objects of the Cube class have attributes for length, width, and height since they inherit “everything” from the Rectangle super class.

