CIT 73 Object Oriented Concepts

Chapter 5 Study Guide for Week 8

Class Design Guidelines

This week we are concentrating on the necessary steps and considerations required for completing a good class design. Note that class design represents the real behaviors of the object.

There are three kinds of Java class files.

A miscellaneous object class is used to describe a Rectangle class, a Car class, a Student class, or an Employee class. This type of class will be used as a template for creating objects.

 An application class is used to describe a Java executable program object with a main method. When the operating system is asked to “run” a particular program, the operating system loads the executable java program (an object) into memory and searches for a main method which it will execute.

 The Applet class is in the Java API library and is used to describe an executable program object with an init method. When the browser is asked to execute an html file that calls an Applet object, the browser will load the Applet object from the specified server and searches for an init method which it will execute.

There are two kinds of users related to the two kinds of classes. “End Users” such as accountants, engineers, administrators, secretaries, etc. are the users when we are discussing an Application class or an Applet class. Software Developers are users when we are discussing a Miscellaneous Object class. It is important for us to have a clear understanding of what kind of class file we are designing and what kind of user we are dealing with before we start. We should then determine the needs of the user.

The sequence of events leading to a good class design are as follows:

Data Comes First

· Identify obvious attributes

· Describe attributes as to units and type

· Decompose attributes into data variables (fields)

Behaviors are Second

· Keep to a minimum.

· Only consider necessary behaviors.

· List method names for each behavior.

· Describe the interface which includes the access code, return type, method name, and parameter list for each method.

· Classes with good interfaces can be “extended” to allow for sub classes that inherit this class and extended by allowing for additional methods to be implemented later.

Plan the Implementation

· Do not involve users.

· Provide user required services.

· Methods must be “changeable”.

· All data must be hidden (access code = private).

· All methods called by a public method should also be private.

Designing Constructors

· Constructors should put objects in a safe state with all attributes initialized properly.

· Check out the default constructor.
Destructors

· “Garbage” causes memory leaks.

· Garbage is created when objects go out of scope. Note that objects are only known within the block where they were instantiated. Garage is also created when the address of an object is modified to point to another object.

· Destructors are required when using the C++ language.

· Destructors are not required in C# and Java because those languages have implemented automatic garbage collection.

Design Error Handling

· Anticipate all potential errors

· Applications should never crash

· 1. Prevent by validating all input as the first line of defense.

· 2. Catch and fix all possible exceptions.

· 3. Exit gracefully as a last resort

Design Documentation Standards

· Adopt standards for UML Class Diagrams.

· Adopt standards for Pseudo Code method details.

· Adopt standards for Logic Chart method details.

· Adopt standards for documenting Java Syntax.

Design Cooperating Objects

· Objects do not live in isolation.

· Why create an object if it has no interaction with other objects?

·
Will this class serve other classes?

· Will this class request service from other classes?

· How will this class interact?

Design for Extension

· Do not create specific classes (for example, a supervisory employee class).

· Design a Person class . . . Not an Employee class.

· Extend Person class to Employee class . . . Not a Supervisory Class.

· Extend Employee class to Supervisory class.

Consider Static Attributes and Methods

· Which ones should be designated as static?

· Example . . . interest_rate attribute in a BankAccount class.

· Static methods can only access static attributes.
· Static methods can only call other static methods.
Adopt a Name/Identifier Design

· Use a naming convention . . . for example,

·
Classes start with a capital letter,

· Attributes all lower case,

· Methods – first syllable lower case, first letter of remaining syllables upper case.

· Objects –. first syllable lower case, first letter of remaining syllables upper case.

Consider Copying Objects

· See Chapter 3.

· A Deep Copy will copy all attributes. If an attribute is an object, then attributes of

 that object will be copied and etc.

· A Shallow Copy will copy only first level attributes. If an attribute is an object, then only its address will be copied etc.

Consider Comparing

- A Deep Compare may use attributes of any level as primary or secondary sort fields.

- Shallow Compare can only use attributes of the top level object as primary or

 secondary sort fields.

· Java syntax must be implemented for each sort method.

Minimize Scope of Variables

· No global vars should be declared at the class level.

· Keep all var declarations at the local method within a particular method. This will allow for copying and pasting methods from an existing class into a new class.

Design a Class that is Responsible for Itself

· A class should know how to display itself.

· A class should know how to modify itself.

· A class should know how to draw itself.

· A class should know how to perform calculations.

· A class should know how to use Polymorphism.

Design for Maintainablility

· Keep methods short.

· Eliminate dependent code.

· Classes are “coupled” when changes in ClassA cause changes in Class B. These

 changes would typically be changes to an interface.

· Keep all changes in the implementation.

· Keep coupling low.

Use Iteration

· Keep interfaces to minimum.

· Continue “walk-thrus” of all class diagrams and interfaces with all of the users.

· Check for insufficient interfaces.

· Keep the users involved.

Using Stubs

· Use stubs when coding a class.

· A stub is a method without implementation details. It only displays a message to indicate that it has been properly called.

· Why code and test an implentation if the interface code does not work?

Consider Object Persistence

· Persistence involves saving objects (usually on disk) for later use.

· A simple solution uses a flat file to store attributes and then reading the attributes from the flat file, calling and passing the stored attributes to the constructor to restore the objects. Note that if an attribute is an object, only the address of the object will be stored in a flat file.

· Java provides a much better solution for saving objects. The File Serialization feature is relatively simple to implement with minimum syntax.

· A more complex solution involves the use of software to convert all object data including object attributes to a relational data base. This solution is also required to interface a new OO system to a legacy database system.

