cit73sga.doc

CIT 73 Object Oriented Concepts

Study Guide 10 for Week 10 – Chapter 7

Inheritance & Composition

Inheritance is documented with a class model (see figure 7.4). Class models indicate an IS-A relationship.

Composition is documented with an object model (see figure 7.8). Object models indicate a HAS-A relationship.

Inheritance and Composition are object oriented relationships that provide for re-use. Inheritance allows a class to “inherit” all of the attributes and behaviors of another class. Composition allows a class to contain an object of another class as an attribute. With inheritance we can re-use many attributes and behaviors of another class. With inheritance we can code many attributes and methods in one super class and then create several sub classes. Each sub class will inherit the behaviors and attributes of the super class with minimum syntax. Composition allows us to create a Date object with month, day, and year attributes, along with methods to display the date in several different formats. We can then re-use these objects of the date class as attributes in any object that must store and process dates.

Inheritance Design Issues

Inheritance was originally very popular, but more recently we have come to recognize some of its weaknesses. It should not be misused or overused. Some OO developers are suggesting that it should be avoided. Designers should thoroughly understand its strengths and weaknesses before implementing inheritance.
It eliminates “re-inventing the wheel” when properly used. A check must be made to ascertain that an object of a sub class really is an object of the super class. A golden retriever is a dog, but a window is not necessarily a rectangle! All inherited code should be tested! Inheritance also allows for a change to a super class to “ripple” down through all of the sub classes without any extra effort. Suppose we have a Bird Super class with a fly method and it is inherited by many sub classes for unique birds. What if we discover some birds (penguin & ostrich) that do not fly. Should we create two more sub classes called “FlyingBird” and “NonFlyingBird” to be inserted between Bird and the unique bird sub classes? This is a major design issue.

The super class is a general and contains all common methods and attributes required in the sub classes. Sub classes contain only those methods and attributes that have been “factored out as common” and moved up to the super class. As you move down the tree the sub classes should become more specific. More factoring results in more complexity. Do you need all of the sub classes? The design question becomes “Less Complexity or More functionality”? Check out the Dog class and its sub classes in figure 7.3, 7.4, and 7.5.

Composition Design Issues

Composition follows the pattern that we use for our natural thinking and that is “objects contain other objects”. An object with attribute objects is a composite object and represents a HAS-A relationship. There are two types of composition called Aggregation and Association. Aggregation is “stronger” than Association. An example of Aggregation could be “a car has an engine”. Note the UML connector with the diamond at the car object. An example of Association could be “a computer is serviced by a keyboard”. Note that there would be a UML connector without the diamond at the computer object. In our class we will consider both types of composition as simply composition. See figure 7.8 for a good example of an object model showing composition or HAS-A relationships. Note the complexity that would be involved if we introduced a Dial object off of The Tuner object, a FFButton object off of the Cassette object, and a Lock object off of the handle object. Using too much composition leads to complexity! The level of complexity of the object model is obviously up to the developer.

Definitions of UML Models

A Class Model with Inheritance shows IS-A relationships. See figure 7.2, 7.3, 7.4 and 7.5. These are examples of Inheritance Relationships.

An Object Model with Composition shows HAS-A relationships. See fig 7.7 and 7.8. These are examples of Composition Relationships.

Encapsulation Revisited

Encapsulation involves packaging both data (attributes) and methods (behaviors) into a well written class. Encapsulation also requires that the interfaces which are the headers for the public methods should be exposed. The attributes, private methods, and the implementation (code) for the public methods should not be exposed. Encapsulation is one of the OO basic rules and Inheritance is one of the OO primary concepts. Note that when we deliver a system consisting of object classes and application classes, we only deliver the compiled Java byte code and nothing is “exposed”. We would also deliver (“exposed”) a text document indicating the name of each class with a copy of the headers for each public method in the class. The headers would indicate the return type, method name, and parameter list indicating passed variable names and types.

Inheritance Implies Strong Encapsulation with Other Classes

 All sub classes have many of the same method interfaces and attributes which have been encapsulated into the Super Class. When an object of any other class attempts to access an object of any of the sub classes in an inheritance hierarchy, the method interfaces and attributes are the same.

Inheritance Can Weaken Encapsulation

This problem occurs when the implementation of a super class method is modified, and this method is inherited by several layers of sub classes. To reduce the risk of this problem, designers should check to make certain that each sub class object “IS-A” super class object. A golden retriever IS-A dog and could inherit all attributes and methods from the dog class. On the other hand, a Window is not a Rectangle and when it is made a sub class of Rectangle, it possibly will inherit a method that will cause a problem if the super class method implementation is modified. See top of page 122.

Polymorphism Revisited

To revisit Polymorphism we return to the Shape super class, and the Rectangle and Circle sub classes that we discussed in chapter 1 on pages 24 – 26. This class model is repeated on page 123 of chapter 7. Polymorphism means “many forms” and note that Shape objects can take on many different shapes. They can be in the form of a Rectangle or a Circle.

An object should be responsible for itself. It should know how to create itself, modify itself, display itself, and in this case . . . how to calculate its area. Shape (page 123) is an abstract class, and the getArea method in the Shape class is an abstract method. Note that both are printed in italics. Abstract methods have no implementation in the super class and must be implemented in each sub class. Note how objects of the sub class can each return their area when the getArea method is called. What if we wanted each sub class object to be able to draw itself. We could add an abstract draw method to the super class and implement it in each sub class. Note the Java syntax (bottom of page 123, top of page 124) to declare an abstract Shape class with an abstract draw method, in addition to the constructor, setters, and getters. The draw method has been implemented in each sub class to merely display a remark as to what it is doing in place of the actual code to display a Rectangle or Circle.

An application class (TestShape) with a main method (bottom of page 124) will be used to test the Shape class and its sub classes. Note that it creates/instantiates three objects; there’s one object for each of the sub classes. Then each object is referenced, and it calls “its own” draw method. The test results are shown on page 125. The author then adds another sub class (Triangle) and modifies the TestShape class file to also test the Triangle sub class (top of page 124). To see the real power of polymorphism you could pass each shape to a static drawme method that has no knowledge of what kind of shape it is receiving. The main method can then safely call the drawme method, pass it the shape object, and draw the correct shape for that object. The changes to the TestShape file are shown on the bottom of page 126 including the static drawme method.

A very practical use of polymorphism can be observed with an array of shape objects including Circles, Rectangles, and Triangles. Each element of the array can be accessed, and the draw method could be called to draw the object in that element. Better still each element could be accessed in a loop. Below I have included an application file to demo the syntax for creating an array of objects that were instantiated from sub classes of Shape and then processing through the array, along with the test results.

public class TestShapeArray

{

public static void main (String args [])

{

Shape [] myshapes = new Shape [4];

myshapes [0] = new Circle();

myshapes [1] = new Rectangle();

myshapes [2] = new Circle();

myshapes [3] = new Triangle();

System.out.println(myshapes[0].draw());

System.out.println(myshapes[1].draw());

System.out.println(myshapes[2].draw());

System.out.println(myshapes[3].draw());

} // end of main

} // end of TestShapeArray

/* Test Results

 I am drawing a Circle

 I am drawing a Rectangle

 I am drawing a Circle

 I am drawing a Triangle

 Press any key to continue...

*/

