CIT 73 Object Oriented Concepts

Study Guide B for Week 11

Chapter 8 FrameWorks and Reuse:

Designing with Interfaces and Abstract Classes

This week we will be discussing inheritance, interfaces, abstract classes, and composition. We will consider how they “fit” together as a single model for a system.

Reusable Code

· available in any programming language

· depends on how well it is designed

· OO design is not the only way to develop reusable code.

· But, OO programming languages provide good tools to develop reusable code and frameworks

 . interfaces

 . inheritance

 . abstract classes

 . composition (object attributes)

 . frameworks

FrameWorks

Note that the MS Office Suite has several applications including Word, Excel, Access, PowerPoint, Outlook Express, etc. Each application has the

· same menu bars with same icons

· same pull down menus with same options

· same Min-Max button

· same Close button

· same colors

· same font and char size

All of the applications are built using the same “framework”. Also note the Shape class with the Rectangle and Circle sub classes. All classes have the same draw method. We say that these classes were designed using the same framework.

Advantages of Frameworks

· interfaces can conform to Operating Systems

· consistent look and feel

· end users do not have to learn new framework

· developers can reuse code

· frameworks can be documented in API

Frameworks are Maintained by Contracts

· Software “contracts” require the developer to comply with the rules of the framework. To comply includes standardization of method names, look and feel, attributes, comments, etc.

· Enforcement of a contract is critical.

· Contracts are implemented through the use of abstract classes or interfaces.

Contract Implementation via an Abstract Class

Note that in figure 8.3 the shape class is abstract, and the draw method in the shape class is also abstract. Let’s assume that all sub-classes should be able to draw themselves with the same method name. All “shapes” should use the same syntax to draw themselves. Each sub class must have its own implementation and must implement a concrete version of the draw method. Also note that the shape framework is truly polymorphic! The Java syntax for the Shape class, the Circle class, and Rectangle class is on page 134. Make sure that you are comfortable with these classes.

Contract Enforcement via Abstract Classes

The Circle and Rectangle classes extend the Shape class. That is, they inherit from Shape. Shape is an abstract class and has an abstract method named draw (). If Circle fails to provide a draw method with same interface as draw method in Shape, Java will not compile the Circle class. Circle in this case has failed to satisfy the contract. Java is the enforcer.

Contracts can only be used with an inheritance relationship. They cannot be used with a composition relationship. Before leaving contracts with inheritance, you should review the definitions for a Class Hierarchy Model and an Object Aggregation/Association Model in Study Guide 10.

interfaces

Interfaces are also used as contracts to be enforced by Java.

· C++ has no interfaces.

· C++ uses only abstract classes and methods to enforce contracts.

· C++ supports multiple inheritance.

· Java does not support multiple inheritance.

· Java uses interfaces.

· Java supports multiple interfaces.

Contract Enforcement using interfaces

· An interface can be used to design systems written in Java and requiring the concept of multiple inheritance. If I wanted to have a DuckBoat class that inherited methods from the Boat class and the Truck class, I could create a DuckBoat class that “extends” the Boat class and “implements” the Truck class.

· An interface is used to enforce contracts for a framework. Any class that implements an interface MUST also implement concrete code for each method header in the interface. If a class that implements an interface failed to implement the method headers in the interface, the class will not compile, and the contract has been enforced.

· An interface is similar to a class except that it has no attributes and has only method headers without implementation.

· A Java class can inherit from (extends) and abstract super class.

· A Java class can implement (implements) an interface.

Note the UML diagram of the Java interface named Nameable in figure 8.4 and the Java syntax for the interface on page 136. It has method headers for the getName() and setName() methods.

Also note the UML diagram of the sample code (figure 8.5 on page 138) which implements the Nameable interface, the Dog sub class, the Mammal super class and the Head class (see page 137), and the Dog Class (see bottom page 138). This is an excellent example of the following:

· Super Class Mammal

· Sub class Dog which implements Nameable

· Class head which is associated with Dog as a Composition relationship

· Nameable interface

Note the difference between the inheritance relationship (Dog IS-A Mammal) and the composition relationship (Dog HAS-A Head).

Dog IS-A Mammal = inheritance relationship example

Dog implements Nameable = interface example

Dog HAS-A Head = composition example

The Nameable interface could also be implemented by the Planet class, Car class, and the Dog class (page 140 – 141) to enforce a contract for a framework to access and modify a name attribute in any of the classes. See pages 140 – 142.

Summary

The UML diagram of the Shop system (figure 8.7 on page 147) is an excellent summary for this chapter. It has contract enforcement using the abstract class Shop with abstract methods getInventory() and buyInventory, and contract enforcement using the Nameable interface implemented by DonutShop and PizzaShop. There is an inheritance relationship between DonutShop and PizzaShop with Shop. There is a composition relationship between CustList and Shop.

