cit73sgc.doc

Objects Oriented Concepts – CIT73

Study Guide for Week 12 – Chapter 9

Building Objects

In Chapter 7 we discussed how Inheritance and Composition are used in different ways to build objects. Then in Chapter 8 we learned how to design a Framework and enforce it through a contract. Software contracts can be created with Abstract classes or Interfaces. Also in Chapter 8 we saw how Inheritance, Interfaces, Composition, and Abstract classes “fit together” on an UML Class Diagram. Chapter 9 is entitled Building Objects, and we are going to further study how objects are related to each other in an overall design. The design will be documented using an UML Class Diagram.

Inheritance vs. Composition

We should review one more time how inheritance relationships and composition relationships represent the different ways that objects can be related to each other. The end result of an inheritance relationship equals a single class incorporating all of the attributes and behaviors of the inheritance hierarchy. The end result of a Composition relationship equals several classes used to build a new class.

Inheritance

An inheritance relationship is the relationship that is identified between two classes used to create a new class. Note that inheritance involves only two classes with NO interaction between objects of those classes.

Example:

 An Employee IS-A Person.

 Employee object does NOT need services of a Person object

 because . . . Employee object IS-A Person Object!

Composition

Composition represents a part of the whole, and it has a HAS-A relationship. As examples of a composition relationship, note that a Car object HAS-A a steering wheel and a PC object HAS-A keyboard. Composition implies that all car objects have a steering wheel object as an attribute. Likewise, all PC objects have a keyboard object as an attribute. Composition divides complex systems into less complex parts. Since the Car object HAS-A engine, tires, steering wheel, etc., we sometimes call the Car object an abstraction. Abstractions allow for:

a. easy communication

b. “things” to be better understood

c. parts that are interchangeable

d. reuse of interchangeable software parts

Building in Phases with Composition

Systems and sub systems can be built independently and maintained independently. Large systems must be broken into smaller systems, and each smaller system can be built from a smaller subsystem. Each subsystem can be built from a smaller subsystem. Keep it simple . . . using composition relationships.

Types of Composition Relationships

A composition is a HAS-A collaboration between objects. There are two types of composition relationships; aggregations and associations. Note that both inheritance and composition are used to build systems of classes.

Aggregation

With this type of composition, the first object in the collaboration “sees” the second object in the collaboration as a single whole part. An example of a second object might be a Steering Wheel object and the first object might be a Car object. The steering wheel is an aggregate part of the car and the parts of the Steering Wheel would not appear in the class diagram. . Note . . . A Car object has a Steering Wheel object.

Association

With this type of composition, the first object “sees” the second object as the whole and all of its parts. An example of a first object might be Stereo System object, and Stereo System object might be associated with a CD player, a DVD player, a tuner, an amplifier, and a speaker. All of these parts are connected via “patch cords” on the class diagram and in this case are associated with the Stereo System.

Summary – A driver HAS-A Car object.

 A Car HAS-A engine object.

 An Engine HAS-A cylinder object.

 Car, engine, and cylinders are each an aggregation of many parts.

 A homeowner has a stereo which is associated with a tuner, CD player,

 DVD player, amplifier, and speaker.

Aggregation is a stronger HAS-A relationship than Association.

Avoiding Dependencies (where one object is dependent on another)

Stereo System is stable.

· objects not dependent on one another

· not convenient to move

· easy to repair or buy new component

· easy to purchase components from different vendors

TV is convenient

· all objects in one box and dependent on each other

· convenient to move

· difficult to maintain and we are often forced to repair or buy complete unit

· difficult to purchase components from different vendors

System designers must decide on class designs that are stable or convenient.

Cardinality

Cardinality is the number of objects that participate in an association and whether the participation is optional or mandatory. Note the three questions at the bottom of page 161 that one must ask to determine cardinality. You should pay particular attention to the Employee class that inherits from the Person class on pages 161 – 163 which has composition relationships with Division, JobDescription, Spouse, and Child. Note the table for Cardinality of

Class Association in table figure 9.1.

Cardinality Notation for Associations

You should study the UML diagram in figure 9.7.

Note that:

1. Employee objects are associated with from 0 . . . 1 Spouse objects. (Optional)

2. Employee objects are associated with 1 and only 1 Division objects. (Mandatory)

3. Employee objects are associated with from 1 . . . n (i.e. many) JobDescription objects. (Mandatory)

4. Employee objects are associated with from 0 … n (i.e. many) Child objects. (Optional)

If object x is associated with 1 object y and object y is associated with 1 object x, we call this a 1 to 1 association. 1 to 1 associations should be drawn as aggregation with a diamond at the end of the association line.

In figure 9.9 note that a dog is associated with 1 head and a head is associated with 1 dog. In reality a dog HAS-A head. This is a very strong relationship which should be called aggregation.

