CIS123 Object Oriented Concepts

Study Guide 14, Chapter 12, Serialization
Persistent Objects

In all systems, procedural or object oriented data is the main issue. Data bases are part of all solutions for system design. This chapter looks at the very important task of saving data to a backup (disk) media. In an object oriented system, the data is stored initially in each object. We must be concerned with saving objects whenever the system is shut down for maintenance and when a hardware/software crash or power failure shuts down the system unexpectedly.

Objects are created by Java Application programs, and they remain in the memory space allocated to the application. When the application terminates, they are destroyed. Objects are always in some kind of state. Before the application terminates, the state of each object must be preserved on a permanent media. Objects that are preserved in this way are called persistent objects. They “persist” and they can be restored by any application independently of the original application that created them.

Saving the State of an Object

Objects can be saved/stored in three different formats.

1. Flat File

2. Serialized File

3. Relational Data Base

4. Object Data Base

Saving Objects to a Flat File

A flat file is a file managed by the operating system using OS protocols. Objects cannot be saved as variables in Java since there is not a variable type for Java objects of any class. The data attributes can be written to a Text file as variables separated by a unique delimiter (for ex. a comma ,). The variables must be written in a particular order (for ex. an int, followed by two Strings, followed by a double) for each object. This Text file can then be read back in and after each set of variables has been stored, the class constructor can be called and the variables can be used as arguments for the constructor to recreate the object. In order to read the file you must know the sequence of the variables for each object and you must know what delimiter was used between each variable. We call this process decomposition (writing each data attribute) and recomposition (reading back data attributes and calling the constructor) of an object.

Saving Objects to a Serialized File

There is “built-in” Java syntax that makes the writing and reading of the object variables to a flat file a simple and transparent task for the programmer. If the class that describes the objects to be written and read, implements the Serializable interface from the Java API library, then the writeObject and readObject methods can be used to process objects into and out of the file.

See the “Serialized Files Demo” on the CIS74 Sample List. The following three Java class files are combined in this demo file:

1. A Rectangle class that describes Rectangle Objects and implements the Serializable interface.

2. An executable (WriteObjects) class file that instantiates three Rectangle objects and writes them to a Serialized file named Rects.txt.

3. An executable (ReadObjects) class file that reads the three objects from the Serialized file named Rects.txt file and display their contents on the screen.

